124 research outputs found

    Optically induced coherent intra-band dynamics in disordered semiconductors

    Full text link
    On the basis of a tight-binding model for a strongly disordered semiconductor with correlated conduction- and valence band disorder a new coherent dynamical intra-band effect is analyzed. For systems that are excited by two, specially designed ultrashort light-pulse sequences delayed by tau relatively to each other echo-like phenomena are predicted to occur. In addition to the inter-band photon echo which shows up at exactly t=2*tau relative to the first pulse, the system responds with two spontaneous intra-band current pulses preceding and following the appearance of the photon echo. The temporal splitting depends on the electron-hole mass ratio. Calculating the population relaxation rate due to Coulomb scattering, it is concluded that the predicted new dynamical effect should be experimentally observable in an interacting and strongly disordered system, such as the Quantum-Coulomb-Glass.Comment: to be published in Physical Review B15 February 200

    Directed current due to broken time-space symmetry

    Full text link
    We consider the classical dynamics of a particle in a one-dimensional space-periodic potential U(X) = U(X+2\pi) under the influence of a time-periodic space-homogeneous external field E(t)=E(t+T). If E(t) is neither symmetric function of t nor antisymmetric under time shifts E(t±T/2)E(t)E(t \pm T/2) \neq -E(t), an ensemble of trajectories with zero current at t=0 yields a nonzero finite current as tt\to \infty. We explain this effect using symmetry considerations and perturbation theory. Finally we add dissipation (friction) and demonstrate that the resulting set of attractors keeps the broken symmetry property in the basins of attraction and leads to directed currents as well.Comment: 2 figure

    Ultra-thin, single-layer polarization rotator

    Get PDF
    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Theory of Fast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots

    Full text link
    Optical techniques for the quantum control of the dynamics of multiexciton states in a semiconductor quantum dot are explored in theory. Composite bichromatic phase-locked pulses are shown to reduce the time of elementary quantum operations on excitons and biexcitons by an order of magnitude or more. Analytic and numerical methods of designing the pulse sequences are investigated. Fidelity of the operation is used to gauge its quality. A modified Quantum Fourier Transform algorithm is constructed with only Rabi rotations and is shown to reduce the number of operations. Application of the designed pulses to the algorithm is tested by a numerical simulation.Comment: 11 pages,5 figure

    Coherent control using adaptive learning algorithms

    Full text link
    We have constructed an automated learning apparatus to control quantum systems. By directing intense shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten

    On Multi-Index Filtrations Associated to Weierstraß Semigroups

    Get PDF
    This paper is a survey on the main techniques involved in the computation of the Weierstraß semigroup at several points of curves defined over perfect fields, with special emphasis on the case of two points. Some hints about the usage of some packages of the computer algebra software Singular are also given; these are however only valid for curves defined over Fp with p a prime number

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    The killer within: Endogenous bacteria accelerate oyster mortality during sustained anoxia

    Get PDF
    16 pages, 5 figures, 2 tablesSustained periods of anoxia, driven by eutrophication, threaten coastal marine systems and can lead to mass mortalities of even resilient animals such as bivalves. While mortality rates under anoxia are well-studied, the specific mechanism(s) of mortality are less clear. We used a suite of complementary techniques (LT50, histology, 16S rRNA amplicon sequencing, and valvometry) to show that the proliferation of anaerobic bacteria within eastern oysters (Crassostrea virginica) accelerates mortality rate under anoxic conditions. Manipulative laboratory experiments revealed that oyster survival under anoxic conditions was halved when bacteria were present compared to when they were excluded by the broad-spectrum antibiotic chloramphenicol. Histological assessments supported this mechanism and showed infiltration of bacteria in oysters that were not treated with antibiotics compared to a general lack of bacteria when oysters were treated with antibiotics. 16S rRNA amplicon sequencing failed to identify any particular genera of bacteria responsible for mortality, rather a diversity of endogenous anaerobic and/or sulfate-reducing bacteria were common among oysters. In addition, monitoring of oyster valve gaping behavior in the field revealed that oysters showed remarkable valve closure synchrony when first exposed to anoxia. However, oysters periodically opened throughout anoxia/hypoxia in both the lab and field, suggesting that the infiltration of exogenous bacteria from the environment may also influence mortality rates under natural settings. Coupled with previous studies, we posit that mass mortality events in a wide range of coastal bivalves are likely the result of co-morbidity from asphyxiation and bacterial processesThis study was funded by L'Étang Ruisseau Bar Ltd. in partnership with the Department of Fisheries and Oceans of Canada (Aquaculture Collaborative Research and Development Program, project 17-G-02 led by M.R.S.C.), a NSERC Discovery Grant to R.F. (RGPIN-2017-04294), and a Total Development Fund from the New Brunswick Department of Agriculture, Aquaculture and Fisheries to R.F.Peer reviewe
    corecore